Fully Feedforward Unsupervised Features Learning in Early Visual Layers with Binary-STDP

Submission ID 3000159

Submission Type Poster

Topic Neuroscience

Status Submitted

Submitter Paul Ferré

Affiliation Brainchip Inc.

SUBMISSION DETAILS

Presentation Type Poster Presentation

Presentation Abstract Summary We present a binary variant of the STDP learning rule which perform unsupervised feature learning in feedforward convolutional neural networks with several layers. The addition of two prior, Winner-Takes-All and weight normalization mechanisms, stabilizes the training and allows us to obtain early visual features similar to the ones observed in the early visual cortex. We show that the features learn sparse representations and are relevant for visual classification task, validated on the MNIST and CIFAR-10 datasets.

Paper Upload (PDF) CCN_P_Ferre_F_Mamalet_S_Thorpe.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Paul *	Ferré *	Brainchip Inc.	paul.ferre@cnrs.fr
Franck	Mamalet	Brainchip Inc.	fmamalet@brainchipinc.c om
Simon	Thorpe	CNRS CerCo UMR 5549	simon.thorpe@cnrs.fr

Keywords

Keywords		
Spike-Timing-Dependent-Plasticity		
Convolutional Neural Network		
Unsupervised Learning		
Winners-Take-All		

Early Visual	l Layers
--------------	----------